Calculus 140, section 2.4 One-Sided and Infinite Limits

notes prepared by Tim Pilachowski
Examples A-D: Consider the following functions. Why is it problematic to try to evaluate $\lim _{x \rightarrow 1} f(x)$ for them?
A) $f(x)=\sqrt{x-1}$
B) $f(x)=\frac{|x-1|}{x-1}$
C) $f(x)=\frac{1}{x-1}$
D) $f(x)=\ln (x-1)$

Definition 2.4: "Let f be a function defined at each point of some open interval (c, a). A number L is the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{a} from the left (or is the left-hand limit of \boldsymbol{f} at \boldsymbol{a}) if for every $\boldsymbol{\varepsilon}>0$ there is a number $\delta>0$ such that

$$
\text { if } a-\delta<x<a \text {, then }|f(x)-L|<\varepsilon
$$

In this case we write $\lim _{x \rightarrow a^{-}} f(x)=L$ and say that the left-hand limit of \boldsymbol{f} at \boldsymbol{a} exists."
The notation $\lim _{x \rightarrow a^{-}} f(x)$ is read "the limit of $f(x)$ as x approaches a from the left".
If we were to consider some open interval (a, c) to the right of a, we get the analogous right-hand limit of \boldsymbol{f} at \boldsymbol{a}. If $\lim _{x \rightarrow a^{+}} f(x)=L$ we say that the right-hand limit of \boldsymbol{f} at \boldsymbol{a} exists."
The notation $\lim _{x \rightarrow a^{+}} f(x)$ is read "the limit of $f(x)$ as x approaches a from the right".
How do these one-sided limits connect to the ordinary, or two-sided limits of section 2.2?
Theorem 2.5 (short version): If both one-sided limits exist and also $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ exists, and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)
$$

Good news: All of the properties given in Lecture 2.3 (sum rule, constant multiple rule, etc.) apply to one-sided limits!
As always, you should read through the more detailed explanations in the text, and look over the text's workedout Examples.

Example A: Given $f(x)=\sqrt{x-1}$, evaluate $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.

Example B: Given $f(x)=\frac{|x-1|}{x-1}$, evaluate $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.

Example B extended: Given $f(x)=\left\{\begin{array}{cc}2 x-1 & \text { for } x<1 \\ 1 & \text { for } x>1\end{array}\right.$, evaluate $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.

Example C: Given $f(x)=\frac{1}{x-1}$, evaluate $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.

Definition 2.6 (short version): If $\lim _{x \rightarrow a^{\text {or- }}} f(x)=\infty$, or $\lim _{x \rightarrow a^{\text {+or- }}} f(x)=-\infty$, then "the vertical line $x=a$ is called a vertical asymptote of the graph of \boldsymbol{f}, and we say that we say that f has an infinite ... limit at \boldsymbol{a}."
Example C extended: Given $f(x)=\frac{x-1}{x^{2}-1}$, find all vertical asymptotes.

Example D: Given $f(x)=\ln (x-1)$, evaluate $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.

The text considers the graph of $f(x)=\sqrt[3]{x}$. While it has no vertical asymptotes, something interesting occurs when we consider the slope of the tangent at $x=0$.

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\frac{x^{1 / 3}-0}{x-0}=\frac{1}{x^{2 / 3}}=\infty
$$

Definition 2.7: "Suppose f is continuous at a. If $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\infty$ or $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=-\infty$ then we say that the graph of f has a vertical tangent at $(\boldsymbol{a}, \boldsymbol{f}(\boldsymbol{a})$). In that case the vertical line $x=a$ is called the line tangent to the graph of \boldsymbol{f} at \boldsymbol{a}."

